
Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 1

An Incompleteness Theorem for the Natural World
i

by Rudy Rucker

rudy@rudyrucker.com

Emeritus Professor, Department of Computer Science, San Jose State University,

San Jose, CA

Appeared in Hector Zenil (ed), Irreducibility and Computational Equivalence.

Emergence, Complexity and Computation: 10 Years After Wolfram's A New Kind of

Science. Springer. Berlin. 2013.

Introduction

The philosopher Gottfried Wilhelm von Leibniz is perhaps best known for the

fierce controversy that arose between him and Sir Isaac Newton over the invention of

calculus. The S-like integral sign that we use to this day is in fact a notation invented by

Leibniz.

When Leibniz was a youth of nineteen, he wrote a paper called “De Arte

Combinatorica”, in which he tried to formulate a universal algebra for reasoning, in the

hope that human thought might some day be reducible to mathematical calculations, with

symbols or characters standing for thoughts.

 But to return to the expression of thoughts by means of

characters, I thus think that controversies can never be resolved,

nor sectarian disputes be silenced, unless we renounce complicated

chains of reasoning in favor of simple calculations, and vague

terms of uncertain meaning in favor of determinate characters.

In other words, it must be brought about that every fallacy

becomes nothing other than a calculating error, and every sophism

expressed in this new type of notation becomes in fact nothing

other than a grammatical or linguistic error, easily proved to be

such by the very laws of this philosophical grammar.

Once this has been achieved, when controversies arise,

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 2

there will be no more need for a disputation between two

philosophers than there would be between two accountants. It

would be enough for them to pick up their pens and sit at their

abacuses, and say to each other (perhaps having summoned a

mutual friend): “Let us calculate.”
ii

Let’s refer to this notion as Leibniz’s dream the dream of finding a logical

system to decide all of the things that people might ever disagree about. Could the dream

ever work?

Even if the dream were theoretically possible (which it isn’t), as a practical matter

it wouldn’t work anyway. If a universal algebra for reasoning had come into existence,

would, for instance, Leibniz have been able to avoid his big arguments with Newton?

Not likely. People don’t actually care all that much about logic, not even Leibniz. We

just pretend to like logic when it happens to be on our side otherwise we very often

abandon logic and turn to emotional appeals.

This said, there’s a powerful attraction to Leibniz’s dream. People like the idea of

finding an ultimate set of rules to decide everything. Physicists, for instance, dream of a

Theory of Everything. At a less exalted level, newspapers and TV are filled with miracle

diets simple rules for regulating your weight as easily as turning a knob on a radio.

On the ethical front, each religion has its own compact set of central teachings. And

books meant to help their readers lead happier lives offer a simple list of rules to follow.

But, as I hinted above, achieving Leibniz’s dream is logically impossible.

In order to truly refute Leibniz’s dream, we need to find a precise way to

formulate it. As it happens, formal versions of Leibniz’s dream were first developed

early in the Twentieth century.

An early milestone occurred in 1910, when the philosophers Bertrand Russell and

Alfred North Whitehead published their monumental Principia Mathematica, intended to

provide a formal logical system that could account for all of mathematics. And, as we’ll

be discussing below, hand in hand with the notion of a formal system came an exact

description of what is meant by a logical proof.

There were some problems with the Russell-Whitehead system, but by 1920, the

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 3

mathematician David Hilbert was confident enough to propose what came to be known as

Hilbert’s program.

(1) We will discover a complete formal system, capable of deciding all the

questions of mathematics.

(2) We will prove that this system is free of any possible contradiction.

As Hilbert put it, “The conviction of the solvability of every mathematical

problem is a powerful incentive to the worker. We hear within us the perpetual call:

There is the problem. Seek its solution. You can find it by pure reason, for in

mathematics there is no ignorabimus.”

For a decade, scientists could dream that Hilbert’s program might come true. And

meanwhile mathematics and much of physics were being recast as formal systems.

Scientific theories could now be viewed as deterministic processes for determining the

truth of theorems. Leibniz’s dream was nearly at hand!

But, then, in 1931, the logician Kurt Gödel proved his celebrated Incompleteness

Theorem.

Gödel’s Incompleteness Theorem. If F is a consistent formal system as powerful

as arithmetic, then there are infinitely many sentences which are undecidable for F.

This means there can never be formal system of mathematics of the kind sought

by Hilbert’s program. Every formal system F about mathematics is incomplete in the

sense that there are sentences G such that F fails to prove G or ~G, where ~G is the

negation of G.

Gödel’s sentences G take the form of statements that certain algebraic formulas

have no solutions in the natural numbers. Normally these sentences include at least one

very large numerical parameter that in some sense codes up the entire theory F. Wolfram

(2002, p. 790) has suggested that there might be some much simpler undecidable

Gödelian sentences, and proposes that the following sentence might be undecidable: “For

all m and n, m
2
 n

5
 + 6n + 3.”

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 4

Philosophers of science have wondered if there is something like an

Incompleteness Theorem for theories about the natural world. One somewhat awkward

approach might be to argue that if the natural world happens to be infinite, then we can in

some sense represent the system of natural numbers as a list of objects within the world

and then go on to claim that the usual undecidable Gödel statements about arithmetic are

also statements about the natural world.

But, as I discuss in (Rucker, 1982, p. 290), this isn’t a satisfying approach. If we

wanted to have number theory be a subset of a theory W about the physical world, we’d

need for W to single out an infinite set of objects to play the role of the numbers, and W

would also need to define relations the correspond to numerical addition and

multiplication.

What we really want is a proof—or at least a plausibility argument—for a Natural

Incompleteness Theorem that asserts the existence of undecidable sentences that are

about natural physical processes—as opposed to being about the natural numbers in

disguise.

Wolfram’s analysis of computation in A New Kind of Science opens a path. The

first step is to accept the idea that natural processes can be thought of as computations.

And the second step is to argue for some form of Wolfram’s Principle of Computational

Equivalence.

Wolfram’s Principle of Computational Equivalence (PCE): Almost all processes

that are not obviously simple can be viewed as computations of equivalent sophistication.

In this essay I’ll show that, starting from Wolfram’s two steps, we can prove a

Natural Incompleteness Theorem. My method will be to make use of Alan Turing’s 1936

work on what he called unsolvable halting problems. And rather than using the full

strength of Wolfram’s somewhat controversial Principle of Computational Equivalence,

I’ll base my argument on a weaker assumption, which I call the Halting Problem

Hypothesis. And we’ll end up with the following Natural Incompleteness Theorem.

Natural Incompleteness Theorem. For most naturally occurring complex

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 5

processes and for any correct formal system for science, there will be sentences about the

process which are undecidable by the given formal system.

This is, I believe, a clean statement of new result—and may be of real importance

to the philosophy of science. Although Wolfram (2002, p. 1138) gives some specific

examples of undecidable statements about natural processes, he fails to state the general

Natural Incompleteness Theorem.

The Halting Problem Hypothesis

It’s traditional to ask if a computation comes to an end, or if it halts. We can

extend our language a bit and speak of a natural process as halting it happens to reach or

to pass through some particular designated state. The established results about the

narrow sense of halting apply to this generalized sense as well.

In many situations we value processes that halt in our more general sense.

Suppose you feed a set of equations into some computer algebra software, and that you

ask the software to solve the equations. What you want is for the resulting process to halt

in the sense of displaying an answer on the screen. It doesn’t halt in the more dramatic

and narrow sense of going dead or freezing up the machine.

In many situations, we like to have computations or processes that don’t halt.

When we simulate, say, the life of some artificially alive creature, or the evolution of a

species, we aren’t aiming towards a specific kind of result, and still less do we want to

see a fixed state or periodic behavior. In this situation we prefer a non-halting

computation that continues to produce novel effects.

The distinction between halting and not halting leads to Turing’s Theorem of

1936.

Definition. The computation P is said to have a solvable halting problem if and

only if there is an algorithm for deciding in advance which inputs will cause P eventually

to reach a halted target state, and which inputs will cause P to run endlessly without ever

reaching a halted target state.

Definition. A computation is universal if it can emulate any other computation.

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 6

Emulating a particular computation C means that you can feed a certain code into

your universal computation U that will cause U to produce the same input-output

behavior as C.

As it happens, universal computations are in fact very common. Any personal

computer, for instance, embodies a universal computation. Indeed, even as simple a

computation as the one-dimensional cellular automaton with rule-code 110 is universal

(Wolfram, 2002).

Putting all our new concepts together, we arrive at the following.

Turing’s Theorem. If U is a universal computation, and then U has an unsolvable

halting problem.

This means that if a computation is of a sufficiently rich and general nature, then

there is no simple algorithm for predicting which inputs will make U run forever, and

which inputs will make U end up in some desired target state, such as the state of coming

to a halt.

Let’s switch focus now, and discuss how the notion of halting problems can be

used to formulate a weaker form of Wolfram’s Principle of Computational Equivalence.

For convenience, here is a statement of the PCE again.

Wolfram’s Principle of Computational Equivalence (PCE): Almost all processes

that are not obviously simple can be viewed as computations of equivalent sophistication.

I’ll now ring the PCE through three changes, hit a snag, formulate an alternate

form of the PCE, and then suggest a still-weaker hypothesis that I’ll call the Halting

Problem Hypothesis (HPH).

Suppose that we speak of computations rather than processes, and that we speak

of computations that are “complex” rather than “not obviously simple.” In this case the

PCE becomes:

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 7

(1) Almost all complex computations are of equivalent sophistication.

What might Wolfram mean by saying that two computations are “of equivalent

sophistication”? Suppose we take this to mean that the computations can emulate each

other or that, more technically, they have the same degree of unsolvability. So now the

PCE becomes:

(2) Almost all complex computations can emulate each other.

Now certainly Turing’s universal computation is complex. So, given that a

computation which emulates a universal computation is itself universal, the PCE

becomes:

(3) Almost all complex computations are universal.

But mathematical logicians have proved:

(Snag) There are very many complex computations which are not universal.

The “almost all” in the PCE gives us some wiggle room.
iii

 But at this point we’d

do well to back off. Suppose we weaken the range of application of the PCE. Rather

than saying it applies to “almost all” complex computations, suppose we say it applies to

“Most naturally occurring” complex computations. And this gives us a weakened

formulation of the PCE.

(4) Most naturally occurring complex computations are universal.

This statement may still be too strong. Rather than insisting upon it, let’s consider

what we plan to use the PCE for. As I mentioned in the introductory section, I plan to

use something like the PCE as a stepping stone to a Natural Incompleteness Theorem.

And for this, all I need is the following Halting Problem Hypothesis (HPH).

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 8

(HPH) Halting Problem Hypothesis: Most naturally occurring complex

computations have unsolvable halting problems relative to some simple notion of halting.

Think of a computation as an ongoing process, for example your life, or society,

or a plant growing, or the weather. As I mentioned in the previous section, relative to a

given computation we can formulate the notion of a target state as being some special

status or behavior that the computation might eventually reach. The halting problem in

this context is the problem of deciding whether a given input will eventually send your

computation into one of the target states. And, once again, a halting problem is

unsolvable if there's no computation, algorithm, or rule-of-thumb to detect which inputs

won't ever produce one of these specified target state.

The HPH says that if you have some naturally occurring computation that isn’t

obviously simple, then there will probably be some simple notion of a target state that

leads to an unsolvable halting problem.

Note that the PCE implies the HPH. Going in the other direction, the HPH does

not imply the PCE. The HPH claims only that certain computations have unsolvable

halting problems, and does not claim that these computations are universal. The good

thing about the HPH is that, unlike the PCE, the HPH has no difficulties with the many

non-universal computations that have unsolvable halting problems. The HPH has a better

chance of being true, and is easier to defend against those who doubt the validity of

Wolfram’s analysis of computation.

It’s worth noting that it may be possible to drop the two-fold qualifier “mast

naturally occurring” from the HPH and to get a Strong Halting Problem Hypothesis as

stated below.

 Strong Halting Problem Hypothesis: All complex computations have unsolvable

halting problems relative to some notion of halting.

This says that all complex computations have associated with them some

unsolvable halting problem. If this is indeed the case, then the Strong Halting Problem

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 9

Hypothesis clarifies what we mean by a “complex computation.”

Getting back to the weaker HPH, let me clarify its import by giving some fanciful

examples. The table below lists a variety of real world computations. In each row, I

suggest a computation, a notion of “target state”, and a relevant question that has the

form of a halting problem—where we try to detect initial states that produce endlessly

running computations that never reach the specified target state. (I’m idealizing here, and

temporarily setting aside the issue that none of the physical processes that I mention can

in fact run for infinitely many years.)

Assuming that the HPH applies to these computations with these particular

definitions of target state, we’re faced with unsolvability, which means that none of the

questions in the third column can be third column can be answered by a finding a simple

way to detect which inputs will set off a process that never reaches the target states.

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 10

Computation Target States Unsolvable Halting Problem

The motions of the bodies

in our solar system.

Something rams

into Earth.

Which possible adjustments to

Earth’s orbit can make us safe

forever?

The evolution of our

species as we spread from

world to world.

Extinction. Which possible tweaks to our genetics

might allow our race survive

indefinitely?

The growth and aging of

your body.

Developing

cancer.

Which people will never get cancer?

Economics and finance. Becoming

wealthy.

Which people will never get rich?

Crime and punishment. Going to jail. Which kinds of careers allow a person

to avoid incarceration forever?

Writing a book. It’s obviously

finished.

Which projects are doomed from the

outset never to be finished?

Working to improve one’s

mental outlook.

Serenity,

tranquility, peace.

When is a person definitely on the

wrong path?

Finding a mate. Knowing that this

is the one.

Who is doomed never to find true

love?

Inventing something. Eureka! Which research programs are utterly

hopeless?

Table 1: Unsolvable Halting Problems In Everyday Life.

A Natural Incompleteness Theorem

Let’s begin by defining what I mean by a formal system. A formal system F can

be characterized as having four components: A set of symbols, a rule for recognizing

which finite strings of symbols are grammatical sentences, a rule for deciding which

sentences are to be regarded as the axioms of the system, and some inference rules for

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 11

deducing sentences from other sentences.

A proof of a sentence S from the formal system F is a sequence of sentences, with

the last sentence of the sequence being the targeted sentence S. Each preceding sentence

must either be an axiom or be a sentence which is arrived at by combining still earlier

sentences according to the inference rules. If a sentence is provable from F, we call it a

theorem of F.

Combined with the notion of proof, a formal system becomes the source of a

potentially endless number of theorems. Aided by a formal system, we mentally reach

out into the unknown and produce facts about entirely new situations.

Now let’s think of a formal system as a computation. There are several ways one

might do this, but what’s going to be most useful here is to work with a computation

FProvable that captures the key aspect of a formal system: it finds theorems. Our

FProvable will try to detect so far as possible which strings of symbols are

theorems of F. That is, for any proposed provable sentence S, the computation

FProvable(S) will carry out the following computation.

(1) If S fails to be a grammatical sentence FProvable(S) returns False.

(2) Otherwise FProvable starts mechanically generating proofs from the formal

system F in order of proof size, and if S appears at the end of a proof, FProvable(S)

returns True.

(3) If S is a grammatical sentence but no proof of S is ever found, then

FProvable(S) fails to halt.

As it turns out, if F is a powerful enough formal system to prove the basic facts of

arithmetic, then FProvable will be universal. And then, by Turing’s Theorem, FProvable

has an unsolvable halting problem.
iv

Let’s come back to Leibniz’s dream. Suppose we could formulate some

wonderfully rich and inclusive formal system F that includes mathematics, physics,

biology, human psychology, and even the laws of human society. And then, just as

Leibniz said, whenever we’re asked if some statement S about the world were true, we’d

set the computation FProvable(S) in motion, and the computation would eventually return

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 12

True provided that S is provable as well as true.

One cloud on the horizon is that, if S isn’t provable, then FProvable(S) is going to

run forever. And, due to the unsolvability of the halting problem, there’s no way to filter

out in advance those sentences S that are in fact unprovable sentences.

To delve deeper, we need two more definitions. As a I mentioned before, we’ll

use ~ to represent negation. So if S is a sentence, ~S means “not S”. That is, S is false if

and only if ~S is true. Using this notion of negation, we can formulate the notion of

consistency.

Definition. F is consistent if and only if there is no sentence S such that F proves S

and F proves ~S.

According to the usual rules of logic, if a theory proves even one contradiction,

then it will go ahead and prove everything possible. So an inconsistent theory is useless

for distinguishing between true and false statements about the world. We can reasonably

suppose that our proposed Leibniz’s-dream-type theory F is consistent.

What if neither S nor ~S are provable from F? As it turns out, the neither-nor case

does happen. A lot! The reason has to do with, once again, the unsovability of the

halting problem for FProvable.

Definition. If F is a formal system and S is a particular statement such that F

proves neither S nor ~S, we say S is undecidable for F.

 A priori, we can see that there are four possible situations regarding the behavior

of the “Is S provable?” computation.

 FProvable(~S) returns

True

FProvable(~S) doesn’t

halt.

FProvable(S) returns

True.

F proves both S and ~S,

meaning F is inconsistent.

F proves S.

FProvable(S) doesn’t halt. F proves ~S. F proves neither S nor ~S,

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 13

meaning that S is

undecidable for F.

Table 2: Four Kinds of Provability and Unprovability

In their optimism, the early mathematical logicians such as David Hilbert hoped

to find a formal system F such that the undecidable and inconsistent cases would never

arise. As I mentioned earlier, Hilbert’s program proposed finding a provably consistent

formal system F that could decide all mathematical questions. But Hilbert’s hopes were

in vain. For we have Gödel’s Incompleteness Theorem, which tells us that any formal

system designed along the lines of Leibniz’s dream or Hilbert’s program will leave

infinitely many sentences undecidable.

Gödel’s Incompleteness Theorem. If F is a consistent formal system as powerful

as arithmetic, then there are infinitely many sentences which are undecidable for F.

What are these undecidable sentences like? As I mentioned in the introduction,

one simple kind of undecidable sentence, call it G, might be characterized in terms of

some algebraic property g[n] that a number n might have. It might look like this, where

g[n] can be thought of as being a simple algebraic formula with the parameter n:

(G) For all n, g[n] isn’t true.

 It’s interesting, though a bit dizzying, to compare and contrast two related ways

of talking about a sentence S. On the one hand, we can ask if S is true or false in the real

world of numbers, and on the other hand we can ask if S or ~S happens to be provable

from F . In the case where the sentence G has the form mentioned above, only three

possibilities can occur. In order to illuminate the notion of undecidability, let’s take a

quick look at the three case.

(1) G is false, and ~G is provable. If G is false, his means there is a specific n

such that g[n] holds in the world of numbers. F will be able to prove the instance g[n]

simply by checking the arithmetic. Therefore, F will be able to prove ~G.

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 14

(2) G is true, and G is provable. If the G sentence is true in the world of

numbers, then g[n] is false for every n. Now in some situations, there may be a clever

proof of this general fact from F. I call such a proof “clever” because it somehow has to

prove in a finite number of symbols that that g[n] is impossible for every n. A general

proof doesn’t get bogged down at looking at every possible value of n. It has to use some

kind of tricky reasoning to cover infinitely many cases at once.

(3) G is true, and G is not provable. In these cases, there is no clever proof. The

only way F could prove G would be to look at every possible number n and show that

g[n] isn’t true but this would take forever. In a case like this it’s almost as if G only

happens to be true. At least as far as F can see, there’s no overarching reason why g[n] is

impossible for every n. It’s just that, as chance would have it, in the real world there

aren’t any such n. And thus G is undecidable by F .

The computer scientist Gregory Chaitin suggests that in a case like the third, we

think of G as a random truth. It’s not true for any deep, theoretical reason. It’s just

something that turns out to be so.
v

Note that there’s an endless supply of undecidable sentences S beyond the simple

kinds of sentences G that I’ve been discussing . Some initial examples of the next level

of complexity might be “For each m there is an n such that g[m, n]” or “There is an m

such that for all n, g[m, n].”

Most mathematicians would feel that, in the real world of mathematics, any of

these sentences is definitely true or false, regardless of F’s inability to prove either of the

alternatives. So the undecidable statements are “random” truths about the mathematical

world, brute facts that hold for no particular reason.

 But so far, we’ve only been talking about number theory. How do we get to

undecidable sentences about the natural world? If we accept the HPH, and we assume

that any natural process can be regarded as a computation, then we can find

undecidability in any complex natural process!

The path leads through the following lemma, proved by Turing in 1936.

Unsolvability and Undecidability Lemma. If P is a computation with an

unsolvable halting problem, and F is a correct formal theory, then there will be infinitely

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 15

many sentences about P which are undecidable for F.

In this Lemma, by the way, I’m using the phrase “correct formal theory” to mean

a formal theory that doesn’t prove things which are false. I won’t go into the somewhat

technical details of the proof of this lemma, but the general idea is that there have to be

lots of sentences about P that are undecidable for F, for otherwise F could solve P’s

unsolvable halting problem.

So now we come to the pay-off. Naturally occurring processes can be thought of

as computations. If we accept the Halting Problem Hypothesis, then each naturally

occurring process will have an unsolvable halting problem. And then, by applying

Turing’s Unsolvability and Undecidability Lemma, we get the following.

Natural Incompleteness Theorem. For most naturally occurring complex

processes, and any correct formal system for science, there will be sentences about the

process that are undecidable by the given formal system.

What makes the Natural Incompleteness Theorem attractive is that the

undecidable sentences are not just about arithmetic. They’re about the behavior of actual

real-world processes.

No matter how thoroughly you try and figure the world out, there are infinitely

many things you can’t prove. Here are some examples of potentially undecidable

sentences. Each of them may be, in principle, true or false, but only in a random kind of

way, in that they’re not proved or disproved by any of our formal theories about the

world.

Nobody will ever manage to bounce a golf ball a thousand times in a row off a putter

head.

There are an endless number of planets in our universe.

There are an endless number of planets with people indistinguishable from you.

No human will ever be born with six functioning arms.

No cow’s spots will ever spell out your first name in big puffy letters.

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 16

Every year with a big birth rate increase is followed by a big war.

The left wing will dominate American politics more often than the right wing does.

Mankind will evolve into higher forms of life.

The majority of times that you move to a different line in a supermarket, the new line

goes slower than one of the lines you didn’t pick.

New races of intelligent beings will emerge over and over for the rest of the time.

The time of our cosmos extends forever.

Table 3: Potentially Undecidable Statements about the Natural World.

Do note that, as with our examples about natural halting problems, we need some

analysis of how to take into account the issue that so few of our natural systems can in

fact be viewed as potentially eternal. But I’ll leave the fine points of issue for other

investigators to work out.

 Undecidability Everywhere

It often happens in the history of science that some odd-ball new category is

discovered. At first nobody’s sure if any phenomena of this kind exist, but then there’s

some kind of logical argument why these odd-ball things have to occur. And then, as

time goes on, more and more of the curious entities are discovered until finally they’re

perceived to be quite run of the mill. And I think this is what will happen with the notion

of undecidable sentences about the natural world.

To dramatize this notion, I’ll present a sustained analogy between the spread of

undecidability and the rise of transcendental numbers in mathematics. Brian Silverman

suggested this analogy to me in an email.

Transcendental Numbers. 300 BC. The Greeks worked primarily with real

numbers that can be expressed either as the fraction of two whole numbers, or which can

be obtained by the process of taking square roots. By the time of the Renaissance,

mathematicians had learned to work with roots of all kinds, that is, with the full class of

algebraic numbers where an algebraic number can be expressed as the solution to

some polynomial algebraic equation formulated in terms of whole numbers. The non-

algebraic numbers were dubbed the transcendental numbers. And, for a time, nobody

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 17

was sure if any transcendental numbers existed.

Undecidable Sentences. 1920. In David Hilbert’s time, it seemed possible that, at

least in mathematics, every problem could be decided on the basis of a reasonable formal

system. This was the inspiration for Hilbert’s program.

Transcendental Numbers. 1884. The first constructions of transcendental real

numbers were carried out by Joseph Liouville. Liouville’s numbers were, however, quite

artificial, such as the so-called Liouvillian number 0.1100010000000000000000010000...

which has a 1 in the decimal positions n! and 0 in all the other places. Someone might

readily say that a number like this is unlikely to occur in any real context. (n! stands for

“n factorial” which is the product 1*2*...*n of all the integers from 1 to n.)

Undecidable Sentences. 1931. Kurt Gödel proved the existence of some

particular undecidable algebraic sentences. These sentences were somewhat unnatural.

Relative to a given formal system F, they had the form “This sentence is not provable

from F,” or the alternate form, “The contradiction 0 = 1 is not provable from the formal

system F.”

Transcendental Numbers. 1874. Georg Cantor developed his set theory, and

showed there are an infinite number of transcendental numbers. Someone could say that

Cantor’s transcendental numbers aren’t numbers that would naturally occur, that they are

artificial, and that they depend in an essential way upon higher-order concepts such as

treating an infinite enumeration of reals as a completed object.

Undecidable Sentences. 1936. Building on Gödel’s work, Alan Turing proved

his theorem on the unsolvability of the halting problem. He immediately derived the

corollary that there are infinitely many undecidable sentences of mathematics, and that

these sentences came in quite arbitrary forms. Even so, the specific examples of such

sentences that he could give were still odd and somewhat self-referential, like Gödel’s

undecidable sentences.

Transcendental Numbers. 1873. Charles Hermite proved that the relatively non-

artificial number e is transcendental.

Undecidable Sentences. 1965. On an entirely different front, Paul J. Cohen

proved that an important question about infinite sets called the continuum hypothesis is

undecidable from the known axioms of mathematics. (Cohen’s proof built on an earlier

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 18

result proved by Kurt Gödel in 1946.) 1970. Back in the realm of unsolvable halting

problems, Julia Robinson, Martin Davis, Yuri Matiyasevich showed that among the

sentences undecidable for any formal theory we’ll find an infinite number of polynomial

Diophantine equations which don’t have any whole number solutions, but for which we

can’t prove this fact. This means there a very large range of ordinary mathematical

sentences which are undecidable.

Transcendental Numbers. 1882. Ferdinand Lindemann proved that the garden

variety number pi is transcendental.

Undecidable Sentences. 2002. Wolfram pointed out that we should be able to

find numerous examples of undecidability in the natural world.

And now we have a Natural Incompleteness Theorem telling us that every

possible complex natural process is going to have undecidable sentences associated with

it! Undecidability is everywhere, and all of our theories about nature must remain

incomplete.

References

Chaitin, G. J., 1999. The Unknowable. New York: Springer.

Leibniz, G.W. and Gerhardt, C.I. (ed.), 1978. Die philosophischen Schriften von

Gottfried Wilhelm Leibniz. Hildesheim: Georg Olms Verlag.

Rucker, R., 1982. Infinity and the Mind. Boston: Birkhäuser.

Rucker, R., 2005. The Lifebox, the Seashell, and the Soul. New York: Thunder’s

Mouth Press.

Wolfram, S., 2002. A New Kind of Science. Champaign: Wolfram Media.

i
 This paper is adapted from material in Rucker (2005). Formal details about my

argument can be found in this book’s appendix. Note that in the book, I used a somewhat

unfortunate terminology. I gave the Halting Problem Hypothesis an imprecise name: the

Natural Undecidability Hypothesis. And my Natural Incompleteness Theorem has too

undramatic a name: the Principle of Natural Undecidability.

ii
 The quote is from Leibniz and Gerhardt (1978), volume VII, p. 200. The

passage is translated by the British philosopher George MacDonald Ross and can be

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 19

found on his website.

iii
 When Wolfram formulated his PCE, he was well aware of the problem that

there are infinitely many degrees of unsolvability. Therefore he phrased his PCE so that

it has two loopholes. (Wolfram 2002, p. 734 and pp. 1130-1131.)

The loopholes are to be found in, respectively, the very first and very last phrases

of the PCE, which I italicize here: Almost all processes that are not obviously simple can

be viewed as computations of equivalent sophistication.

Regarding the first loophole, Wolfram is saying that complex non-universal

Turing machines “almost never” occur in natural contexts. This is an interesting aspect

of the PCE, in that it seems to say something about the kinds of processes that actually

occur in the real world.

Keep in mind that Wolfram’s work is empirical. Unlike physical experiments,

computer science experiments are exactly reproducible, and thus have a touch of the

mathematical or theoretical. But really his inspiration came from looking at exceedingly

many computations in action. And to reduce experimenter bias, he made a point of

conducting exhaustive surveys of various classes of rudimentary computations such as

Turing machines and cellular automata.

To exploit the second loophole we might interpret “computations of equivalent

sophistication” more broadly than “computations that can emulate each other.” Wolfram

feels that the processes by which logicians construct complex but non-universal

computations have always depended so essentially on the use of an underlying universal

computation that the constructed computations are in some as-yet-to-be-defined-sense “as

sophisticated as” the universal computations.

Now, so far as I know, all the existing constructions of these complex non-

universal computations do use a universal computation. But it seems capricious to

conclude that therefore every complex non-universal computation in some way relies

upon a construction involving a universal Turing machine.

Indeed it seems plausible that there may in fact be naturally occurring processes

of intermediate degree. It’s tempting to speculate that the one-dimensional CA Rule 30

itself is such a computation. And in this case, the PCE would be false, but the HPH that I

Rudy Rucker, An Incompleteness Theorem for the Natural World

p. 20

describe would be true.

iv
 Turing’s work showed that arithmetic is strong enough to emulate the running

of Turing machines. More specifically, he showed that for any F as strong as arithmetic,

we can set things up so that FProvable emulates M. Since we can do this for any

machine M, this means that FProvable is a universal computation, so Turing’s Theorem

applies, and FProvable has an unsolvable halting problem.

v
 You can find more details in (Chaitin, 1999), and in the papers on Chaitin’s

home page.

