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Introduction 

The philosopher Gottfried Wilhelm von Leibniz is perhaps best known for the 

fierce controversy that arose between him and Sir Isaac Newton over the invention of 

calculus.  The S-like integral sign that we use to this day is in fact a notation invented by 

Leibniz. 

When Leibniz was a youth of nineteen, he wrote a paper called “De Arte 

Combinatorica”, in which he tried to formulate a universal algebra for reasoning, in the 

hope that human thought might some day be reducible to mathematical calculations, with 

symbols or characters standing for thoughts. 

 

  But to return to the expression of thoughts by means of 

characters, I thus think that controversies can never be resolved, 

nor sectarian disputes be silenced, unless we renounce complicated 

chains of reasoning in favor of simple calculations, and vague 

terms of uncertain meaning in favor of determinate characters. 

In other words, it must be brought about that every fallacy 

becomes nothing other than a calculating error, and every sophism 

expressed in this new type of notation becomes in fact nothing 

other than a grammatical or linguistic error, easily proved to be 

such by the very laws of this philosophical grammar. 

Once this has been achieved, when controversies arise, 
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there will be no more need for a disputation between two 

philosophers than there would be between two accountants. It 

would be enough for them to pick up their pens and sit at their 

abacuses, and say to each other (perhaps having summoned a 

mutual friend): “Let us calculate.”
ii
 

 

Let’s refer to this notion as Leibniz’s dream  the dream of finding a logical 

system to decide all of the things that people might ever disagree about.  Could the dream 

ever work? 

Even if the dream were theoretically possible (which it isn’t), as a practical matter 

it wouldn’t work anyway.  If a universal algebra for reasoning had come into existence, 

would, for instance, Leibniz have been able to avoid his big arguments with Newton?  

Not likely.  People don’t actually care all that much about logic, not even Leibniz.  We 

just pretend to like logic when it happens to be on our side  otherwise we very often 

abandon logic and turn to emotional appeals. 

This said, there’s a powerful attraction to Leibniz’s dream.  People like the idea of 

finding an ultimate set of rules to decide everything.  Physicists, for instance, dream of a 

Theory of Everything.  At a less exalted level, newspapers and TV are filled with miracle 

diets  simple rules for regulating your weight as easily as turning a knob on a radio.  

On the ethical front, each religion has its own compact set of central teachings.  And 

books meant to help their readers lead happier lives offer a simple list of rules to follow.  

But, as I hinted above, achieving Leibniz’s dream is logically impossible. 

In order to truly refute Leibniz’s dream, we need to find a precise way to 

formulate it.  As it happens, formal versions of Leibniz’s dream were first developed 

early in the Twentieth century. 

An early milestone occurred in 1910, when the philosophers Bertrand Russell and 

Alfred North Whitehead published their monumental Principia Mathematica, intended to 

provide a formal logical system that could account for all of mathematics.  And, as we’ll 

be discussing below, hand in hand with the notion of a formal system came an exact 

description of what is meant by a logical proof. 

There were some problems with the Russell-Whitehead system, but by 1920, the 
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mathematician David Hilbert was confident enough to propose what came to be known as 

Hilbert’s program. 

 

(1) We will discover a complete formal system, capable of deciding all the 

questions of mathematics. 

(2) We will prove that this system is free of any possible contradiction.  

 

As Hilbert put it, “The conviction of the solvability of every mathematical 

problem is a powerful incentive to the worker. We hear within us the perpetual call: 

There is the problem. Seek its solution. You can find it by pure reason, for in 

mathematics there is no ignorabimus.” 

For a decade, scientists could dream that Hilbert’s program might come true.  And 

meanwhile mathematics and much of physics were being recast as formal systems.  

Scientific theories could now be viewed as deterministic processes for determining the 

truth of theorems.  Leibniz’s dream was nearly at hand! 

But, then, in 1931, the logician Kurt Gödel proved his celebrated Incompleteness 

Theorem. 

 

Gödel’s Incompleteness Theorem. If F is a consistent formal system as powerful 

as arithmetic, then there are infinitely many sentences which are undecidable for F. 

 

This means there can never be formal system of mathematics of the kind sought 

by Hilbert’s program.  Every formal system F about mathematics is incomplete in the 

sense that there are sentences G such that F fails to prove G or ~G, where ~G is the 

negation of  G. 

Gödel’s sentences G take the form of statements that certain algebraic formulas 

have no solutions in the natural numbers.  Normally these sentences include at least one 

very large numerical parameter that in some sense codes up the entire theory F.  Wolfram  

(2002, p. 790) has suggested that there might be some much simpler undecidable 

Gödelian sentences, and proposes that the following sentence might be undecidable: “For 

all m and n, m
2
  n

5
 + 6n + 3.” 



Rudy Rucker, An Incompleteness Theorem for the Natural World 

p. 4 

Philosophers of science have wondered if there is something like an 

Incompleteness Theorem for theories about the natural world.  One somewhat awkward 

approach might be to argue that if the natural world happens to be infinite, then we can in 

some sense represent the system of natural numbers as a list of objects within the world 

and then go on to claim that the usual undecidable Gödel statements about arithmetic are 

also statements about the natural world. 

But, as I discuss in (Rucker, 1982, p. 290), this isn’t a satisfying approach.  If we 

wanted to have number theory be a subset of a theory W about the physical world, we’d 

need for W to single out an infinite set of objects to play the role of the numbers, and W 

would also need to define relations the correspond to numerical addition and 

multiplication. 

What we really want is a proof—or at least a plausibility argument—for a Natural 

Incompleteness Theorem that asserts the existence of undecidable sentences that are 

about natural physical processes—as opposed to being about the natural numbers in 

disguise. 

Wolfram’s analysis of computation in A New Kind of Science opens a path.   The 

first step is to accept the idea that natural processes can be thought of as computations.  

And the second step is to argue for some form of Wolfram’s Principle of Computational 

Equivalence. 

 

Wolfram’s Principle of Computational Equivalence  (PCE):  Almost all processes 

that are not obviously simple can be viewed as computations of equivalent sophistication. 

 

In this essay I’ll show that, starting from Wolfram’s two steps, we can prove a 

Natural Incompleteness Theorem.  My method will be to make use of Alan Turing’s 1936 

work on what he called  unsolvable halting problems.  And rather than using the full 

strength of Wolfram’s somewhat controversial Principle of Computational Equivalence,  

I’ll base my argument on a weaker assumption, which I call the Halting Problem 

Hypothesis.  And we’ll end up with the following Natural Incompleteness Theorem. 

 

Natural Incompleteness Theorem.  For most naturally occurring complex 
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processes and for any correct formal system for science, there will be sentences about the 

process which are undecidable by the given formal system. 

 

This is, I believe, a clean statement of new result—and may be of real importance 

to the philosophy of science.  Although Wolfram (2002, p. 1138) gives some specific 

examples of undecidable statements about natural processes, he fails to state the general 

Natural Incompleteness Theorem. 

The Halting Problem Hypothesis 

It’s traditional to ask if a computation comes to an end, or if it halts.  We can 

extend our language a bit and speak of a natural process as halting it happens to reach or 

to pass through some particular designated state.  The established results about the 

narrow sense of halting apply to this generalized sense as well. 

In many situations we value processes that halt in our more general sense. 

Suppose you feed a set of equations into some computer algebra software,  and that you 

ask the software to solve the equations.  What you want is for the resulting process to halt 

in the sense of displaying an answer on the screen.  It doesn’t halt in the more dramatic 

and narrow sense of going dead or freezing up the machine.  

In many situations, we like to have computations or processes that don’t halt.  

When we simulate, say, the life of some artificially alive creature, or the evolution of a 

species, we aren’t aiming towards a specific kind of result, and still less do we want to 

see a fixed state or periodic behavior.  In this situation we prefer a non-halting 

computation that continues to produce novel effects. 

The distinction between halting and not halting leads to Turing’s Theorem of 

1936. 

 

Definition.  The computation P is said to have a solvable halting problem if and 

only if there is an algorithm for deciding in advance which inputs will cause P eventually 

to reach a halted target state, and which inputs will cause P to run endlessly without ever 

reaching a halted target state.  

 

Definition.  A computation is universal if it can emulate any other computation. 
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Emulating a particular computation C means that you can feed a certain code into 

your universal computation U that will cause U to produce the same input-output 

behavior as C. 

As it happens, universal computations are in fact very common.  Any personal 

computer, for instance, embodies a universal computation.  Indeed, even as simple a 

computation as the one-dimensional cellular automaton with rule-code 110 is universal 

(Wolfram, 2002). 

Putting all our new concepts together, we arrive at the following. 

 

Turing’s Theorem.  If U is a universal computation, and then U has an unsolvable 

halting problem. 

 

This means that if a computation is of a sufficiently rich and general nature, then 

there is no simple algorithm for predicting which inputs will make U run forever, and 

which inputs will make U end up in some desired target state, such as the state of coming 

to a halt. 

Let’s switch focus now, and discuss how the notion of halting problems can be 

used to formulate a weaker form of Wolfram’s Principle of Computational Equivalence.  

For convenience, here is a statement of the PCE again. 

 

Wolfram’s Principle of Computational Equivalence  (PCE):  Almost all processes 

that are not obviously simple can be viewed as computations of equivalent sophistication. 

 

I’ll now ring the PCE through three changes, hit a snag, formulate an alternate 

form of the PCE, and then suggest a still-weaker hypothesis that I’ll call the Halting 

Problem Hypothesis (HPH). 

Suppose that we speak of computations rather than processes, and that we speak 

of computations that are “complex” rather than “not obviously simple.”   In this case the 

PCE becomes: 
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(1) Almost all complex computations are of equivalent sophistication.  

 

What might Wolfram mean by saying that two computations are “of equivalent 

sophistication”?  Suppose we take this to mean that the computations can emulate each 

other or that, more technically, they have the same degree of unsolvability.   So now the 

PCE becomes: 

 

(2) Almost all complex computations can emulate each other.  

 

Now certainly Turing’s universal computation is complex.   So, given that a 

computation which emulates a universal computation is itself universal, the PCE 

becomes: 

 

(3) Almost all complex computations are universal.  

 

But mathematical logicians have proved: 

 

(Snag) There are very many complex computations which are not universal. 

 

The “almost all” in the PCE gives us some wiggle room.
iii

  But at this point we’d 

do well to back off.  Suppose we weaken the range of application of the PCE.  Rather 

than saying it applies to “almost all” complex computations, suppose we say it applies to 

“Most naturally occurring” complex computations.  And this gives us a weakened 

formulation of the PCE. 

 

(4) Most naturally occurring complex computations are universal. 

 

This statement may still be too strong.  Rather than insisting upon it, let’s consider 

what we plan to use the PCE for.  As I mentioned in the introductory section, I plan to 

use something like the PCE as a stepping stone to a Natural Incompleteness Theorem.  

And for this, all I need is the following Halting Problem Hypothesis (HPH). 
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(HPH)  Halting Problem Hypothesis:   Most naturally occurring complex 

computations have unsolvable halting problems relative to some simple notion of halting. 

 

Think of a computation as an ongoing process, for example your life, or society, 

or a plant growing, or the weather. As I mentioned in the previous section, relative to a 

given computation we can formulate the notion of a target state as being some special 

status or behavior that the computation might eventually reach. The halting problem in 

this context is the problem of deciding whether a given input will eventually send your 

computation into one of the target states. And, once again, a halting problem is 

unsolvable if there's no computation, algorithm, or rule-of-thumb to detect which inputs 

won't ever produce one of these specified target state. 

The HPH says that if you have some naturally occurring computation that isn’t 

obviously simple, then there will probably be some simple notion of a target state that 

leads to an unsolvable halting problem. 

Note that the PCE implies the HPH.  Going in the other direction, the HPH does 

not imply the PCE.  The HPH claims only that certain computations have unsolvable 

halting problems, and does not claim that these computations are universal.   The good 

thing about the HPH is that, unlike the PCE, the HPH has no difficulties with the many 

non-universal computations that have unsolvable halting problems.  The HPH has a better 

chance of being true, and is easier to defend against those who doubt the validity of 

Wolfram’s analysis of computation. 

It’s worth noting that it  may be possible to drop the two-fold qualifier “mast 

naturally occurring” from the HPH and to get a Strong Halting Problem Hypothesis as 

stated below. 

 

 Strong Halting Problem Hypothesis:  All complex computations have unsolvable 

halting problems relative to some notion of halting. 

 

This says that all complex computations have associated with them some 

unsolvable halting problem.  If this is indeed the case, then the Strong Halting Problem 
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Hypothesis clarifies what we mean by a “complex computation.” 

Getting back to the weaker HPH, let me clarify its import by giving some fanciful 

examples.  The table below lists a variety of real world computations.  In each row, I 

suggest a computation, a notion of “target state”, and a relevant question that has the 

form of a halting problem—where we try to detect initial states that produce endlessly 

running computations that never reach the specified target state. (I’m idealizing here, and 

temporarily setting aside the issue that none of the physical processes that I mention can 

in fact run for infinitely many years.) 

Assuming that the HPH applies to these computations with these particular 

definitions of target state, we’re faced with unsolvability, which means that none of the 

questions in the third column can be third column can be answered by a finding a simple 

way to detect which inputs will set off a process that never reaches the target states. 
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Computation Target States Unsolvable Halting Problem 

The motions of the bodies 

in our solar system. 

Something rams 

into Earth. 

Which possible adjustments to 

Earth’s orbit can make us safe 

forever? 

The evolution of our 

species as we spread from 

world to world. 

Extinction. Which possible tweaks to our genetics 

might allow our race survive 

indefinitely? 

The growth and aging of 

your body. 

Developing 

cancer. 

Which people will never get cancer? 

Economics and finance. Becoming 

wealthy. 

Which people will never get rich? 

Crime and punishment. Going to jail. Which kinds of careers allow a person 

to avoid incarceration forever? 

Writing a book. It’s obviously 

finished. 

Which projects are doomed from the 

outset never to be finished? 

Working to improve one’s 

mental outlook. 

Serenity, 

tranquility, peace. 

When is a person definitely on the 

wrong path? 

Finding a mate. Knowing that this 

is the one. 

Who is doomed never to find true 

love? 

Inventing something. Eureka! Which research programs are utterly 

hopeless? 

Table 1:  Unsolvable Halting Problems In Everyday Life. 

 

A Natural Incompleteness Theorem 

Let’s begin by defining what I mean by a formal system.  A formal system F can 

be characterized as having four components: A set of symbols, a rule for recognizing 

which finite strings of symbols are grammatical sentences, a rule for deciding which 

sentences are to be regarded as the axioms of the system, and some inference rules for 
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deducing sentences from other sentences. 

A proof of a sentence S from the formal system F is a sequence of sentences, with 

the last sentence of the sequence being the targeted sentence S.  Each preceding sentence 

must either be an axiom or be a sentence which is arrived at by combining still earlier 

sentences according to the inference rules.  If a sentence is provable from F, we call it a 

theorem of F. 

Combined with the notion of proof, a formal system becomes the source of a 

potentially endless number of theorems.  Aided by a formal system, we mentally reach 

out into the unknown and produce facts about entirely new situations. 

Now let’s think of a formal system as a computation.  There are several ways one 

might do this, but what’s going to be most useful here is to work with a computation 

FProvable that captures the key aspect of a formal system: it finds theorems.  Our 

FProvable will try to detect  so far as possible   which strings of symbols are 

theorems of F.   That is, for any proposed provable sentence S, the computation 

FProvable(S) will carry out the following computation. 

 

(1) If S fails to be a grammatical sentence FProvable(S) returns False. 

(2) Otherwise FProvable starts mechanically generating proofs from the formal 

system F in order of proof size, and if S appears at the end of a proof, FProvable(S) 

returns True. 

(3) If S is a grammatical sentence but no proof of S is ever found, then 

FProvable(S) fails to halt. 

 

As it turns out, if F is a powerful enough formal system to prove the basic facts of 

arithmetic, then FProvable will be universal.  And then, by Turing’s Theorem, FProvable 

has an unsolvable halting problem.
iv

 

Let’s come back to Leibniz’s dream.  Suppose we could formulate some 

wonderfully rich and inclusive formal system F that includes mathematics, physics, 

biology, human psychology, and even the laws of human society.  And then, just as 

Leibniz said, whenever we’re asked if some statement S about the world were true, we’d 

set the computation FProvable(S) in motion, and the computation would eventually return 
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True  provided that S is provable as well as true. 

One cloud on the horizon is that, if S isn’t provable, then FProvable(S) is going to 

run forever.  And, due to the unsolvability of the halting problem, there’s no way to filter 

out in advance those sentences S that are in fact unprovable sentences. 

To delve deeper, we need two more definitions.  As a I mentioned before, we’ll 

use ~ to represent negation.  So if S is a sentence, ~S means “not S”.  That is, S is false if 

and only if ~S is true.  Using this notion of negation, we can formulate the notion of 

consistency. 

 

Definition. F is consistent if and only if there is no sentence S such that F proves S 

and F proves ~S. 

 

According to the usual rules of logic, if a theory proves even one contradiction, 

then it will go ahead and prove everything possible.  So an inconsistent theory is useless 

for distinguishing between true and false statements about the world.  We can reasonably 

suppose that our proposed Leibniz’s-dream-type theory F is consistent. 

What if neither S nor ~S are provable from F? As it turns out, the neither-nor case 

does happen.  A lot!  The reason has to do with, once again,  the unsovability of the 

halting problem for FProvable. 

 

Definition.  If F is a formal system and S is a particular statement such that F 

proves neither S nor ~S, we say S is undecidable for F. 

 

  A priori, we can see that there are four possible situations regarding the behavior 

of the “Is S provable?” computation. 

 

 FProvable(~S) returns 

True 

FProvable(~S)  doesn’t 

halt. 

FProvable(S) returns 

True. 

F proves both S and ~S, 

meaning F is inconsistent. 

F proves S. 

FProvable(S) doesn’t halt. F proves ~S. F proves neither S nor ~S, 
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meaning that S is 

undecidable for F. 

Table 2: Four Kinds of Provability and Unprovability 

In their optimism, the early mathematical logicians such as David Hilbert hoped 

to find a formal system F such that the undecidable and inconsistent cases would never 

arise.  As I mentioned earlier, Hilbert’s program proposed finding a provably consistent 

formal system F that could decide all mathematical questions.  But Hilbert’s hopes were 

in vain.  For we have Gödel’s Incompleteness Theorem, which tells us that any formal 

system designed along the lines of Leibniz’s dream or Hilbert’s program will leave 

infinitely many sentences undecidable. 

 

Gödel’s Incompleteness Theorem. If F is a consistent formal system as powerful 

as arithmetic, then there are infinitely many sentences which are undecidable for F. 

 

What are these undecidable sentences like?  As I mentioned in the introduction, 

one simple kind of undecidable sentence, call it G, might be characterized in terms of 

some algebraic property g[n] that a number n might have.  It might look like this, where 

g[n] can be thought of as being a simple algebraic formula with the parameter n: 

 

(G) For all n, g[n] isn’t true. 

 

  It’s interesting, though a bit dizzying, to compare and contrast two related ways 

of talking about a sentence S.  On the one hand, we can ask if S is true or false in the real 

world of numbers, and on the other hand we can ask if S or ~S happens to be provable 

from F .  In the case where the sentence G has the form  mentioned above, only three 

possibilities can occur.  In order to illuminate the notion of undecidability, let’s take a 

quick look at the three case. 

(1) G is false, and ~G is provable.  If G is false, his means there is a specific n 

such that g[n] holds in the world of numbers.  F  will be able to prove the instance g[n] 

simply by checking the arithmetic.  Therefore, F will be able to prove ~G. 
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(2) G is true, and G is provable.  If  the G sentence is true in the world of 

numbers, then g[n] is false for every n.  Now in some situations, there may be a clever 

proof of this general fact from F.  I call such a proof “clever” because it somehow has to 

prove in a finite number of symbols that that g[n] is impossible for every n.  A general 

proof doesn’t get bogged down at looking at every possible value of n.  It has to use some 

kind of tricky reasoning to cover infinitely many cases at once. 

(3) G is true, and G is not provable.  In these cases, there is no clever proof.  The 

only way F could prove G would be to look at every possible number n and show that 

g[n] isn’t true  but this would take forever.  In a case like this it’s almost as if G only 

happens to be true.  At least as far as F can see, there’s no overarching reason why g[n] is 

impossible for every n.  It’s just that, as chance would have it, in the real world there 

aren’t any such n.  And thus G is undecidable by F . 

The computer scientist Gregory Chaitin suggests that in a case like the third, we 

think of G as a random truth.  It’s not true for any deep, theoretical reason.  It’s just 

something that turns out to be so.
v
 

Note that there’s an endless supply of undecidable sentences S beyond the simple 

kinds of sentences G that I’ve been discussing .  Some initial examples of the next level 

of complexity might be “For each m there is an n such that g[m, n]”  or “There is an m 

such that for all n, g[m, n].” 

Most mathematicians would feel that, in the real world of mathematics, any of 

these sentences is definitely true or false, regardless of  F’s inability to prove either of the 

alternatives.  So the undecidable statements are “random” truths about the mathematical 

world, brute facts that hold for no particular reason. 

 But so far, we’ve only been talking about number theory.  How do we get to 

undecidable sentences about the natural world?  If we accept the HPH, and we assume 

that any natural process can be regarded as a computation, then we can find 

undecidability in any complex natural process! 

The path leads through the following lemma, proved by Turing in 1936. 

 

Unsolvability and Undecidability Lemma.  If P is a computation with an 

unsolvable halting problem, and  F  is a correct formal theory, then there will be infinitely 
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many sentences about P which are undecidable for  F. 

 

In this Lemma, by the way, I’m using the phrase “correct formal theory” to mean 

a formal theory that doesn’t prove things which are false.  I won’t go into the somewhat 

technical details of the proof of this lemma, but the general idea is that there have to be 

lots of sentences about P that are undecidable for F, for otherwise F could solve P’s 

unsolvable halting problem. 

So now we come to the pay-off.  Naturally occurring processes can be thought of 

as computations.  If we accept the Halting Problem Hypothesis, then each naturally 

occurring process will have an unsolvable halting problem.  And then, by applying 

Turing’s Unsolvability and Undecidability Lemma, we get the following. 

 

Natural Incompleteness Theorem.  For most naturally occurring complex 

processes, and any correct formal system for science, there will be sentences about the 

process that are undecidable by the given formal system. 

 

What makes the Natural Incompleteness Theorem attractive is that the 

undecidable sentences are not just about arithmetic.  They’re about the behavior of actual 

real-world processes. 

No matter how thoroughly you try and figure the world out, there are infinitely 

many things you can’t prove.  Here are some examples of potentially undecidable 

sentences.  Each of them may be, in principle, true or false, but only in a random kind of 

way, in that they’re not proved or disproved by any of our formal theories about the 

world. 

 

Nobody will ever manage to bounce a golf ball a thousand times in a row off a putter 

head.  

There are an endless number of planets in our universe. 

There are an endless number of planets with people indistinguishable from you. 

No human will ever be born with six functioning arms. 

No cow’s spots will ever spell out your first name in big puffy letters. 
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Every year with a big birth rate increase is followed by a big war. 

The left wing will dominate American politics more often than the right wing does. 

Mankind will evolve into higher forms of life. 

The majority of times that you move to a different line in a supermarket, the new line 

goes slower than one of the lines you didn’t pick. 

New races of intelligent beings will emerge over and over for the rest of the time. 

The time of our cosmos extends forever. 

Table 3:  Potentially Undecidable Statements about the Natural World. 

Do note that, as with our examples about natural halting problems, we need some 

analysis of how to take into account the issue that so few of our natural systems can in 

fact be viewed as potentially eternal.  But I’ll leave the fine points of issue for other 

investigators to work out. 

 Undecidability Everywhere 

It often happens in the history of science that some odd-ball new category is 

discovered.  At first nobody’s sure if any phenomena of this kind exist, but then there’s 

some kind of logical argument why these odd-ball things have to occur.  And then, as 

time goes on, more and more of the curious entities are discovered until finally they’re 

perceived to be quite run of the mill.  And I think this is what will happen with the notion 

of undecidable sentences about the natural world. 

To dramatize this notion, I’ll present a sustained analogy between the spread of 

undecidability and the rise of transcendental numbers in mathematics.  Brian Silverman 

suggested this analogy to me in an email. 

Transcendental Numbers.  300 BC.  The Greeks worked primarily with real 

numbers that can be expressed either as the fraction of two whole numbers, or which can 

be obtained by the process of taking square roots.  By the time of the Renaissance, 

mathematicians had learned to work with roots of all kinds, that is, with the full class of 

algebraic numbers  where an algebraic number can be expressed as the solution to 

some polynomial algebraic equation formulated in terms of whole numbers.  The non-

algebraic numbers were dubbed the transcendental numbers.  And, for a time, nobody 
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was sure if any transcendental numbers existed. 

Undecidable Sentences.  1920.  In David Hilbert’s time, it seemed possible that, at 

least in mathematics, every problem could be decided on the basis of a reasonable formal 

system.  This was the inspiration for Hilbert’s program. 

Transcendental Numbers.  1884.  The first constructions of transcendental real 

numbers were carried out by Joseph Liouville.  Liouville’s numbers were, however, quite 

artificial, such as the so-called Liouvillian number 0.1100010000000000000000010000... 

which has a 1 in the decimal positions n! and 0 in all the other places.  Someone might 

readily say that a number like this is unlikely to occur in any real context. (n! stands for 

“n factorial” which is the product 1*2*...*n of all the integers from 1 to n.) 

Undecidable Sentences.  1931.  Kurt Gödel proved the existence of some 

particular undecidable algebraic sentences.  These sentences were somewhat unnatural.  

Relative to a given formal system F, they had the form “This sentence is not provable 

from F,” or the alternate form, “The contradiction 0 = 1 is not provable from the formal 

system F.” 

Transcendental Numbers.  1874.  Georg Cantor developed his set theory, and 

showed there are an infinite number of transcendental numbers. Someone could say that 

Cantor’s transcendental numbers aren’t numbers that would naturally occur, that they are 

artificial, and that they depend in an essential way upon higher-order concepts such as 

treating an infinite enumeration of reals as a completed object. 

Undecidable Sentences.  1936.  Building on Gödel’s work, Alan Turing proved 

his theorem on the unsolvability of the halting problem.  He immediately derived the 

corollary that there are infinitely many undecidable sentences of mathematics, and that 

these sentences came in quite arbitrary forms.  Even so, the specific examples of such 

sentences that he could give were still odd and somewhat self-referential, like Gödel’s 

undecidable sentences. 

Transcendental Numbers.  1873.  Charles Hermite proved that the relatively non-

artificial number e is transcendental. 

Undecidable Sentences.  1965.  On an entirely different front, Paul J. Cohen 

proved that an important question about infinite sets called the continuum hypothesis is 

undecidable from the known axioms of mathematics.  (Cohen’s proof built on an earlier 
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result proved by Kurt Gödel in 1946.)  1970.  Back in the realm of unsolvable halting 

problems, Julia Robinson, Martin Davis, Yuri Matiyasevich showed that among the 

sentences undecidable for any formal theory we’ll find an infinite number of polynomial 

Diophantine equations which don’t have any whole number solutions, but for which we 

can’t prove this fact.  This means there a very large range of ordinary mathematical 

sentences which are undecidable. 

Transcendental Numbers.  1882.   Ferdinand Lindemann proved that the garden 

variety number pi is transcendental. 

Undecidable Sentences.  2002.  Wolfram pointed out that we should be able to 

find numerous examples of  undecidability in the natural world. 

And now we have a Natural Incompleteness Theorem telling us that every 

possible complex natural process is going to have undecidable sentences associated with 

it!  Undecidability is everywhere, and all of our theories about nature must remain 

incomplete. 
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i
 This paper is adapted from material in Rucker (2005).  Formal details about my 

argument can be found in this book’s appendix.  Note that in the book, I used a somewhat 

unfortunate terminology.  I gave the Halting Problem Hypothesis an imprecise name: the 

Natural Undecidability Hypothesis.  And my Natural Incompleteness Theorem has too 

undramatic a name: the Principle of Natural Undecidability. 

ii
 The  quote is from Leibniz and Gerhardt (1978), volume VII, p. 200.  The 

passage is translated by the British philosopher George MacDonald Ross and can be 



Rudy Rucker, An Incompleteness Theorem for the Natural World 

p. 19 

                                                                                                                                                 

found on his website.  

iii
 When Wolfram formulated his PCE, he was well aware of the problem that 

there are infinitely many degrees of unsolvability.  Therefore he phrased his PCE so that 

it has two loopholes.  (Wolfram 2002, p. 734 and pp. 1130-1131.) 

The loopholes are to be found in, respectively, the very first and very last phrases 

of the PCE, which I italicize here:  Almost all processes that are not obviously simple can 

be viewed as computations of equivalent sophistication. 

Regarding the first loophole, Wolfram is saying that complex non-universal 

Turing machines “almost never” occur in natural contexts.  This is an interesting aspect 

of the PCE, in that it seems to say something about the kinds of processes that actually 

occur in the real world. 

Keep in mind that Wolfram’s work is empirical.  Unlike physical experiments, 

computer science experiments are exactly reproducible, and thus have a touch of the 

mathematical or theoretical.  But really his inspiration came from looking at exceedingly 

many computations in action.  And to reduce experimenter bias, he made a point of 

conducting exhaustive surveys of various classes of rudimentary computations such as 

Turing machines and cellular automata. 

To exploit the second loophole we might interpret “computations of equivalent 

sophistication” more broadly than “computations that can emulate each other.”  Wolfram 

feels that the processes by which logicians construct complex but non-universal 

computations have always depended so essentially on the use of an underlying universal 

computation that the constructed computations are in some as-yet-to-be-defined-sense “as 

sophisticated as” the universal computations.  

Now, so far as I know, all the existing constructions of these complex non-

universal computations do use a universal computation.  But it seems capricious to 

conclude that therefore every complex non-universal computation in some way relies 

upon a construction involving a universal Turing machine. 

Indeed it seems plausible that there may in fact be naturally occurring processes 

of intermediate degree.  It’s tempting to speculate that the one-dimensional CA Rule 30 

itself is such a computation.  And in this case, the PCE would be false, but the HPH that I 
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describe would be true. 

iv
 Turing’s work showed that arithmetic is strong enough to emulate the running 

of Turing machines.  More specifically, he showed that for any F as strong as arithmetic, 

we can set things up so that FProvable emulates M.  Since we can do this for any 

machine M, this means that FProvable is a universal computation, so Turing’s Theorem 

applies, and FProvable has an unsolvable halting problem. 

v
  You can find more details in (Chaitin, 1999), and in the papers on Chaitin’s 

home page. 


